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Abstract

For three-dimensional mode I crack problems, a new concept on the crack surface widening energy release rate and
its definition in form of integral are proposed, which unlike the classical crack extension energy release rate. This energy
release rate is related to the stress intensity factor by application of the principle of virtual work. From the present
discussions, a very simple method is established to estimate stress intensity factors for three-dimensional cracks within
the framework of elementary strength theory of materials. A series of exact solutions are derived for penny-shaped
cracked homogeneous and composite cylinders. Some results are shown to agree well with those available in the existing
literature. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The J integral has been used to analyze crack problems for long time. Actually, if crack surface is parallel
to axis xj, J integral is the first component J; of two-dimensional conservation law J; (k = 1,2) (Eshelby,
1951; Sih, 1969; Budiansky and Rice, 1973; Rice, 1968). During the last several decades, one focused at-
tention nearly only on the applications of J or J; until the approaches of Kienzler and Herrmann (1986a,b).
In the recent years, G* or J, integral, the second component of conservation law J;, and its applications
were proposed (Xie et al., 1998a,b; Xie, 1998, 2000). J and G* integrals have different physical meanings
when applied to solve crack problems. J integral means the crack extension energy release rate and G*
integral the crack mouth widening energy release rate for the same crack problem. The most important is
that the two integrals yield the Kj using different components of displacements and stresses. Take the
cracked beams for example. The strain and stress fields needed in J integral method should be usually
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determined by numerical analysis; but the strain and stress fields needed in G* integral method can be given
only by elementary mechanics or bending theory (Xie et al., 1998a).

In what follows, an exact method is proposed and a series of exact solutions are derived for penny-
shaped cracked homogeneous and composite cylinders using the G* integral.

2. G* integral

Based on three-dimensional conservation law (Eshelby, 1951; Sih, 1969; Budiansky and Rice, 1973), the
three-dimensional crack surface widening energy release rate can be defined by the integral

G = //A(wnz — Tu;»)d4 (1)

Note that A4 is one of the two crack surfaces, the upper surface whose axis x;, is perpendicular to, is shown in
Fig. 1. The integration area A can also be a curved surface 4" in Fig. 1(b). Boundary of 4’ is the rim of the
crack. Surfaces 4 and A’ form a closed curved. In Eq. (1) w denotes the energy density; 7; the traction
vector; u; the displacements and »; the outward unit normal. The physical meaning of Eq. (1) is the energy
release rate due to the upper crack surface 4 moving in x, direction with unit translation as the lower
remains stationary similar to literature (Xie et al., 1998a).

For a two-dimensional deformation field, the counterpart of Eq. (1), the crack mouth widening energy
release rate (Xie et al., 1998a), is

G = /S(wnz — Tu;p)ds (2)

where s in Eq. (2) is a curve in the x, x; plane. For mode I crack with a unit thickness, shown in Fig. 2, let s
in Eq. (2) represent to the path s, next to the upper crack tip region. Note that s is a straight line and sy, is
a quarter of a circle. Along the path s and sg, Eq. (2) yields (Xie et al., 1998a)

/ (wny — T;n)ds = 0 (3)
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Fig. 1. Upper crack surface moves in x, direction.
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Fig. 2. Integration path for two-dimensional Mode I crack.
1 —v)K? .
/ (wny — Tiu;n)ds = % (plane strain) 4)

Sfg
For a closed path s = St + Stz — Seg, ﬁ (wny — Tiu;)ds = 0. It follows that

/ (wny — Tu;n)ds = / (wny — Tu;n)ds = % (5)

ch Sefg 2 T[E

Eq. (5) can be interpreted as energy release per unit moving of boundary se, in x, direction or the crack
mouth widening energy release rate. v is Poisson’s ratio and E the elastic modulus.

3. Penny-shaped cracked cylinders under tension
3.1. Energy release rate expressed by G* integral

A cylinder with a penny-shaped crack of radius a subjected to tension is shown in Fig. 3. Along the front
of crack tip, there is a stress field of plane strain. Refer to Fig. 4 for considering the integral surface. Let 4
in Eq. (1) be the upper crack surface and divide A4 into two regions. One region denoted by 4, is
X2 +x2 < (a—r)’, x; = 0". The other denoted by 4, is (a — r)> <x? + x2 <a?, x, = 0*. The surface formed
by revolving path s, around axis x; is expressed by A5. 4, and 4, can form a closed surface. Then the crack
surface widening energy release rate for penny-shaped crack can be expressed by

G = //A (wny — Tu;)dA = //41WdA + //Az(wnz — Tu;p)d4 (6)
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Fig. 3. Cracked cylinder with one-half symmetry subjected to tension (Mode I).
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Fig. 4. Cracked cross-sectional area and integration surface. (a) Integration curved surfaces; (b) local integration surface 4} formed by
revolving path s, around axis x;.

From the conservation law, i.e., Ay (wny — Thu;2) d4 = 0 for the closed surface 4, — 4, and Egs. (4) and
(5), it follows that

g0 a(l —v’)K}

//Az(an ~ Tun)dd = //Alz(wnz  Tu)dd = 2n/ (wms — T} — rsing) s =" CL =R g

Sty

Then Eq. (6) becomes

G*//A(wnzr,.u,-,z)dA//AlwdAﬁ(l_TﬂKlz 8)
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Fig. 5. Oblate spheroid model for penny-shaped crack.

3.2. Energy release rate based on elementary mechanics

When d — 0 in Fig. 5, the oblate spheroid will become a penny-shaped crack in cylinder. The strain
energy of the cracked cylinder can be expressed by

U= l_szdxz-l-/d Ndx,
. 2ES o 2ES[1 — (a/b)’(1 — x2/d?)]

:N_z(l_d)+]ﬁ 1 __a/b
28 S @ 1-@p? 1= @y

where the origin of X, coordinate is at the right end of cylinder.
Making use of Clapeyron’s theorem and the external work, ¥ =2U and the total potential energy
I1 =U —V = —U. From elementary theory, the crack surface widening energy release rate is

arctan S = nb?

G* = lim

(_@_n) _z 1
d—0 od 2ES (a/b)m

3.3. Stress intensity factor

(10)

arctan

_ab
\/1— (a/b)?

Egs. (8) and (10) are the crack surface widening energy release rate calculated by different definitions, but
the results should be the same. Let Eq. (8) be equal to Eq. (10), it follows that

(11)

arctan

a(l —v)K? y :N_2 1 a/b B
E +// =2 (a/b)\/1— (a/b)’ V1 - (a/b) 1

Because of free action of crack surface, the integral in left-hand side of Eq. (11) is a small quantity, which
can be neglected. Hence, the stress intensity factor is

K=o, n(b—a)F(%) (12)

where the normalized stress intensity factor is
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Fig. 6. Variations of normalized stress intensity factor with normalized crack radius for cylinder with penny-shaped crack under
tension.

1/2
a l—a/b a 1 1 a/b
() = 144 . arctan -1 (13)
(b) \/_;1:( b) 2(1—v?) (“/b)m m
and
N
. _m (14)

Fig. 6 compares the results of Eq. (13) with those in literature (Sih, 1973).

4. Penny-shaped cracked cylinders under lateral loads
4.1. Energy release rate expressed by G* integral

Referring to Fig. 7, the center-cracked cylinder deflects in x;, x; plane and the lateral loads are added in
the same plane. ¢ is the transverse load per unit length; Q the transverse shear force (Ot = 0 for Mode |
crack); M the bending moment. The symbol ‘+° denotes the cracked cross-section; ‘—’ the remote uncracked
cross-section. At the bottom point of crack, the stress intensity factor reaches its maximum value Kj,y.
Along the crack tip front, the stress intensity factor Kj varies with angular position ¢ according to
K1 = —Kimax sSin @ (see Fig. 4). Similar to Egs. (6)—(8), the crack surface widening energy release rate derived
from the concept of G* integral can be expressed as

1 —v)K}
G = //(wnz — T, p)d4 = // wd4 +w (15)
4 : 4, 2E
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Fig. 7. Cracked cylinder with one-half symmetry subjected to lateral loads (Mode I).
4.2. Energy release rate based on elementary mechanics

Refer to Figs. 5 and 7 to calculate the strain energy of the cracked cylinder. It is not difficult to get.

M- 4 O % — 0.5q8) < (M* — Qx> — 0.5¢:2)°
U— / (M~ 4+ 0 %, — 0.5¢%3) 5 Jr/ ( %2 X2 qx3) e,
0 2EI 0 2EIy(a/b,xy/d)

(16)

where

(52)=1- () (1-5) )

Then the crack surface widening energy release rate under the condition of elementary theory is

- oI\  (M*) sa\ (M~ +01—0.5qP)
G _513%<_@> T 2E (3)_ 2EI (18)
where
a ! dr
y(E) 7/0 1— (a/b)*(1 — 1)’
1+ (a/b)* +a/b
1 ! In (a/) /b1 arctan (19)

1 a/b
=- += S
Ya/by/14 (@) 1+ (/b —a/b Fafby/1 - (a/b) J1 = (a/b)?
From equilibrium conditions, Eq. (18) can be rearranged as

L oIl (MY sa
G —iTé(‘M)— 2 7(5) 1] (20)
which shows that the crack surface widening energy release rate depends only on the bending moment in
cracked cross-section of the cylinders.

4.3. Stress intensity factor
Let Eq. (15) be equal to Eq. (20). It gives

Kimax = 0uy/7(b — a)F(%) (21)
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Fig. 8. Variations of normalized stress intensity factor with normalized crack radius for cylinder with penny-shaped crack under
bending.

where the normalized stress intensity factor

a — (a/b)* a 172
F(Z) - (a/b)l3/2(i ibj/b)l/z { 1 —1v2 [V<E) B 1” (22)
and
4Mta
Op Zm (23)

Fig. 8 compares the results of present paper with one from literature (Sih, 1973) for the case of pure
bending.

The most interested is that, for pure bending, distributed loads, three-point bending or combined loads,
one may easily get the stress intensity factor for center cracked cylinders, as long as knowing the bending
moment in the cracked cross-section.

5. Penny-shaped cracked composite cylinders

A cracked composite cylinder subjected to tension is shown in Fig. 9. If a < b — 4, the G* integral along
crack surface A4 can be given by

6 = [[ s~ Tzt = // wdd + 1‘”2)K2 (24)

Refer to Figs. 5 and 9. The strain energy of the cracked composite cylinder can be expressed by
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Fig. 9. Cracked composite cylinder with one-half symmetry subjected to tension (Mode I).

U/“’ N2dx, +/d N2dx,
0 2(E1S1+E252) 0 2(E1S1+E2S2)“P(d/bﬂ€2/d)

25
N*(1—d) N2d /1 dr (25)
2(E1S1 +E2S2) 2(E1S1 +E252) 0 f)(a/b,t)
where
1 ra\2
(o t)=1—=(=) (1-¢
i(5+) f(b) (1=7),
and
ESN\ [, 4
i= (1485 1-=), Si=n{P>—(b-47", S=nb-4) (26)
E»S, b
Based on elementary mechanics, the energy release rate becomes
ol N? a
=1 —— =7 ) -1 2
G ﬂ%( ad ) 2(E\S; + E>Sy) [/<b) } (27)
where
[a bode 2/(a/b) (a/b)
=) = / . = arctan ———— (28)
() o Wbty 1 a2 V72 = (a/b)?
From Egs. (24) and (27), it is not difficult to get
a
Ky =0a,\/n(b— a)F(E) (29)
where o, = N/n(b* — a*) and the normalized stress intensity factor is
12
(30)

a\_ [L-a/b;  a %/(a/b) (a/b)
F(5) = la/bb@*E)% 2(11—v%> \/T_/Eﬁ,%;?amn\/ﬁ_l

For the case of homogeneous cylinders, thatis, 4 =0 or £, = E; = F and v = v, = v, 1 = 1. Eq. (30) will
become Eq. (13).
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6. Theoretical discussions

For cracked cylinders in above sections, two forms of crack surface widening energy release rate are
derived based on the concept of three-dimensional G* integral and elementary mechanics. The former gives
a function of K7 and the later yields a function of loads. At last, a relationship between stress intensity
factors and loads is given.

Actually, the K7 for cracked cylinders can also be derived directly from three-dimensional conservation
law. Following discussions give the details as an alternative method.

Take the penny-shaped cracked cylinder under tension as an example. Consider a closed curved surface
Sc=A4A+ A"+ A% + A~ for the cracked cylinder shown in Fig. 3. The 4~ denotes the remote uncracked
cross section; A% the cylindrical surface and 4™ the cross-section of crack ligament. Along these surfaces,
integral values are, respectively,

//Acy(wnz — Tu;5)d4 =0 (31)

// (W}’lz — T,-u,-,z)dA =w — Nljtiz (32)
s

//A+ (wny — Tu;n)dA = —(w' — Niizz) (33)

//A(wnz — Tu;n)dd = — //A]wdA - a(l_#vz)](lz (34)

where the #; shows the displacement of neutral axis. This displacement can be determined by bar theory in
mechanics of materials. w is the strain energy density per unit length of cylinder. Note that » in above Egs.
(31)—(34) is outward and normal to the surfaces. The outward normal n of A4 is opposite to x; in Eq. (34).
For the closed surface S = 4 + AT + A% + A, the following expression can be given from conservation

law
s (wny — Tu;p)dA = i (wny — Thu;2)dA =0 (35)

A+ATHAY +A~

Substituting Eqgs. (31)-(34) into Eq. (35), the result is

a(l—v )K2 _ __ _ _ N
// wdd + =w _Nuz,z) - (w" _N”;,z) :E(“zz _”22) (36)
At remote uncracked cross-section, it is not difficult to get the axial strain from bar theory
N
Uy, = —= 37
u2,2 ES ( )

At the cracked cross-section, strain i, can be found (Xie et al., 1998a,b) from the limit of average strain of
oblate spheroid model for penny-shaped cracked cylinder shown in Fig. 5.

u22 _ 11 1/d Nzlx = N arctan¢ (38)
0 d ES|1=(a/b)’(1 = /d)|  ES(a/b)y/1 = (a/b) 1— (a/b)’

Substituting Egs. (37) and (38) into Eq. (36), it will yield Egs. (11) and (12).
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Obviously, above discussions can also be applied to the penny-shaped cracked cylinders under lateral
loads.

7. Conclusions

In present paper, the relationships between three-dimensional G* integral and stress intensity factors for
center cracked cylinders are derived. An exact method is successfully established by G* integral which,
unlike the J integral, can be applied in an extremely simple manner to some three-dimensional cracks in
homogeneous and composite cylinders.
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